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Abstract. The aim of this work is to simulate numerically the two-dimensional, incompressible Newtonian fluid flow around a 
circular cylinder oscillating with small amplitude in the presence of ground plane. The vorticity generated on the body surface 
interacts with the vorticity generated on the ground plane surface to form the viscous wake; the vorticity is discretized and is 
numerically simulated using discrete Lamb vortices. The influence of the clearance and of the amplitude oscillation on the 
aerodynamics loads are analyzed. 
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1. Introduction 

 
The analysis of the unsteady vorticity-dominated flow is a long-standing interest of many researches. In this paper 

we consider one small aspect of the total problem: the numerical simulation of the wake generated by an oscillating 
circular cylinder, which moves with constant velocity in the presence of a ground plane. The amplitude of the 
oscillatory motion is considered to be small compared to the body length; therefore, to the first approximation one is 
allowed to transfer the body boundary condition from the actual position to a mean position of the body surface. The 
numerical simulation is accomplished by using the Vortex Method, which takes into account the viscous effect in the 
flow field. 

Oscillatory motions of small amplitude are important in the analysis of immerse vibrating bodies and special care 
should be taken in the lock-in condition. 

The problem described can be compared with many engineering situations where is possible verify changes in the 
velocity field around a body thus a surface localized near the neighborhood. An automobile near the ground and an 
aircraft landing or taking off are examples of this phenomenon.  

In the literature a model of the single airfoil, near a ground plane, immersed in an upstream shear flow is referred to 
as “the airfoil-vortex interaction in ground effect” – AVIG – and can be viewed as a combination of three interacting 
flows: airfoil-vortex interaction (AVI), airfoil-ground interaction (AGI), and vortex-ground interaction (VGI). A large 
number of papers on the unsteady, incompressible, two-dimensional AVI flow have been published. Within the context 
of the (two-dimensional) parallel AVI that occurs around helicopter rotors, known as blade-vortex interaction (BVI), 
Panaras (1987), Poling et al. (1989) and Lee and Smith (1991), among others, have devised numerical models based on 
the inviscid discrete vortex method coupled with linearized potential flow theory. More elaborate numerical models 
have also been employed, such as those based on Euler (Srinivasan and McCroskey, 1993) and Navier-Stokes (Rai, 
1987) mesh-based methods. Detailed experimental investigations on the aerodynamics of parallel BVI have been 
performed by Seath et al. (1989), Straus et al. (1990), Chen and Chang (1997). See the review articles of McCune and 
Tavares (1993) and Mook and Dong (1994) for additional references on unsteady, incompressible flows over airfoils 
and the numerical simulation of wakes and BVI. 

Chacaltana et al. (1995) analyze the flow around a thin airfoil immersed in a shear flow, in presence of a ground 
plane. The authors use the potential flow theory and taking into account the fact that the airfoil is thin were able to 
derive a simple algorithm. In this paper, the shear flow was simulated by a single moving free vortex. 
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Fonseca et al. (1997, 2003) in a series of two papers applied a numerical, inviscid, vortex method to simulate the 
unsteady, two-dimensional and incompressible flow that occurs during a parallel blade-vortex interaction in ground 
effect. A panel method was used to discretize the airfoil bound vorticity, where each panel has a linear and piecewise- 
continuous distribution of vorticity. The impermeability condition was enforced on the airfoil contour, but the no-slip 
condition is not. The Kutta condition was imposed through the continuity of the pressure field at the airfoil trailing 
edge, which, combined with the condition that the circulation in the whole flow must be conserved, provides a model 
for the vorticity generation at the trailing edge. Thus the viscous wake was modeled by potential vortices shed into the 
flow at the trailing edge and the oncoming shear flow was modeled by a single potential vortex that interacts with the 
airfoil and its wake. 

Ricci et al. (2001) presented a new methodology that utilizes the Vortex Method for the analysis of the vorticity 
generated in the surface of the airfoil with that generated on the ground plane. Lamb vortices are generated along the 
airfoil surface and ground plane to ensure that the no-slip condition is satisfied. Images clouds are provided in the lower 
half ground to ensure that the impermeability condition is satisfied. With the images clouds the computation becomes 
expensive. This is a major source of difficulties, and it can only be handled through the utilization of method of 
distributed singularities, the Panels Method. 

Silva de Oliveira et al. (2005) employed the Vortex Method to simulate the airfoil-vortex cloud interaction in 
ground effect. The no-slip condition is satisfied using Lamb vortices to simulate the vorticity generated in the airfoil 
surface and that generated in the ground surface. The impermeability condition is imposed through the application of a 
source panel method. The main feature of the paper is the oncoming shear flow that has two important characteristics. 
The first is that the shear flow is continuously generated is a plane perpendicular to the main flow, a feature not found 
in any of the previous paper, and the second characteristic is the possibility of having a time variation of the vorticity 
carried out by this shearing flow, see Silva de Oliveira et al. (2004). 

Silva (2004) applied the Vortex Method to analyze the flow around an oscillating airfoil, which moves with 
constant velocity. The amplitude of the oscillatory motion is considered to be small compared to the airfoil length, 
therefore, to the first approximation, one is allowed to transfer the body boundary condition from the actual position to 
a mean position of the body surface. Aerodynamic loads are calculated using an integral equation derived from the 
pressure Poisson equation (Alcântara Pereira et al., 2004). An analysis of the oscillation effect on the mechanism of lift 
generation is also presented. The influence of the ground effect is not considered. 

As mentioned, the model is analyzed using the Vortex Method which is a meshless numerical method or a particle 
method. In this method, the vorticity in the fluid region is numerically simulated using a cloud of discrete vortices with 
a viscous core (Lamb vortex). To simulate the vorticity at the solid surfaces, nascent vortices are generated there at each 
time step of the simulation. In order to take care of the convection and the diffusion of the vorticity one makes use of 
the convection-diffusion splitting algorithm; accordingly the convection of the vortices in the cloud is carried out 
independently of the diffusion for each time step of the simulation. The convection process is carried out with the 
Adams-Bashforth time-marching scheme and the diffusion process is simulated using the random walk method. This is 
in essence the foundation of the Vortex Method (e.g. references Chorin, 1973; Sarpkaya, 1989; Sethian, 1991; Lewis, 
1999; Alcântara Pereira et al., 2002 and Kamemoto, 2004). Please note that with the Lagrangian formulation a grid for 
the spatial discretization of the fluid region is not necessary. Thus, special care to handle numerical instabilities 
associated to high Reynolds numbers is not needed. Also, the attention is only focused on the regions of high activities, 
which are the regions containing vorticity; on the contrary, Eulerian schemes consider the entire domain independent of 
the fact that there are sub-regions where less important, if any, flow activity can be found. With the Lagrangian tracking 
of the vortices, one need not take into account the far away boundary conditions. This is of important in the wake 
regions (which is not negligible in the flows of present interest) where turbulence activities are intense and unknown, a 
priori. 

The present Vortex Method has been used to simulate the macro scale phenomena, therefore the smaller scale ones 
are taken into account through the use of a second order velocity function (Alcântara Pereira et al., 2002). In this 
present approach, the effect of small scale is not considered. 

 
2. Description of the numerical model of the flowfield 

 
2.1. Basic concepts 

 
Consider the incompressible flow of a Newtonian fluid in a large two-dimensional domain around a circular 

cylinder which moves with constant velocity U in ground effect. An oscillatory moving with finite amplitude A and 
constant angular velocity ω is added to body as shown in Fig. 1. In this figure the (x, o, y) is the inertial frame of 
reference and the (X, O, Y) is the coordinate system fixed to the cylinder; this coordinate system oscillates around the 
x-axis as yo = Acos (ωt). 

The boundary S of the fluid domain Ω is 3S2S1SS ∪∪= ; being 3S  the far away boundary, which can be viewed 

as ∞→+= 2y2xr , and 1S the body surface and 2S the ground plane surface. 
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In the body fixed coordinate system, the surface bS1S ≡ is defined by the function 
 

0η(X)bYY)(X,bF =−=                                                                                                                                                         (1) 

 
Thus, in the inertial frame of reference  
 

0η(x)]  (t)0[y byt)y,(x,bF :bS =+−= ,                                         (2) 

 
and, for a symmetrical body 
 

0η(x)(t)0ybyt)y,(x,bF =−= m .                            (3) 

 

 
 

Figure 1.  Definitions. 
 
The cylinder surface bS1S ≡ is defined according the following form  
 

R2Y2XY)(X,bS =+=                                                                                                                                                     (4) 

 
and the boundary surface 2S is defined as 

 
y= − h, -∞ < x <∞                                                                                                                                                                        (5) 
 

2.2. Governing equations 
 
The viscous and incompressible flow is governed by the continuity and the Navier-Stokes equations, which can be 

written in the form   
 

0=⋅∇ u                                                                                                                                                                                          (6) 
 

uuuu 2
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1p

t
∇+−∇=∇⋅+

∂
∂

.                                                                                                                                                   (7) 

 
where u ≡ (u, v) is the velocity vector. As can be seen the equations are non-dimensionalized in terms of U and b         
(cylinder diameter: b = 2R). The Reynolds number is defined by 
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where υ  is the fluid kinematics viscosity coefficient; the dimensionless time is b / U . 

On the body and ground plane surfaces the adherence condition has to be satisfied. This condition is better 
specified in terms of the normal and tangential components as 

 
)()( nvnu ⋅=⋅  on 1S and 2S , the impenetrability condition                      (8a) 

 
)()( τvτu ⋅=⋅  on 1S and 2S , the impenetrability condition, the no-slip condition.                                               (8b) 

 
Here n and τ are unit normal and tangential vectors and v is the surfaces velocity: 1S and 2S . 

Far from the surfaces 1S and 2S one assumes that the perturbation due to the oscillating body fades away, that is 
 

 1→u at 3S .                                                                                                                                                                               (9) 

 
Is considered an small amplitude around the axis x, therefore 
 

)(O
2R

A
ε= , where ε → 0 and ω = O (1).                                                                                                                            (10) 

 
Thus, the boundary conditions on 1S are written directly in the inertial frame of reference as 

 
[ ]t)y,(x,nvt)y,(x,nu ≡  on 1S , the impenetrability condition                                                                                      (11a) 

 
[ ]t)y,(x,τvt)y,(x,τu ≡  on 1S , the impenetrability condition .                                                                                      (11b) 

 
The transference of the boundary conditions on 1S from actual position to the mean position is defined as 
 

η(x)0ycy +=  → )0O(yη(x)cy +=                                                                                                                                (12a) 

 

( ) ( )
( )

⋅⋅⋅+
∂

∂
+=+=
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t),cη(x,cxnu
0yt),cη(x,cxnutη,0y,cxnut),cy,c(xnu                                                 (12b) 

 

( ) ( )
( )

⋅⋅⋅+
∂

∂
+=+=

y

t),cη(x,cxτu
0yt),cη(x,cxτutη,0y,cxτut),cy,c(xτu                                                    (12c) 

 
The dynamics of the fluid motion, governed by the above boundary-value problem, can be alternatively studied by 

taking the curl of Eq. (7), obtaining the well-known 2-D vorticity transport equation   
 

ω∇=ω∇⋅+
∂
ω∂ 2

Re
1

t
u                                                                                                                                                              (13) 

 
where ω  is the only non-zero component of the vorticity vector ω = ∇×u. 

 
2.3. Discrete vortex method 

 
According to the convection-diffusion splitting algorithm (Chorin, 1973) it is assumed that in the same time 

increment the convection and the diffusion of the vorticity can be independently handled and are governed by  
 

0
t

=ω∇⋅+
∂
ω∂ u                                                                                                                                                                           (14) 
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ω∇=
∂
ω∂ 2

Re
1

t
.                                                                                                                                                                           (15) 

 
 
Convection is governed by Eq. (14) and the velocity field is given by  
 

( ) ( )∑
=

∫ ∑
= −

+−+=−
2M

1n n∆S
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1k kzz
k∆Γ

2π

i
dζζzln
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1
1ivu .                                                                                    (16) 

 
Here, u  and v  are the x and y  components of the velocity vector u  and 1-i = . The first term in the right hand sides 
is the contribution of the incident flow; the summation of 2 M integral terms comes from the sources panels with 
constant density distributed on the circular cylinder and ground surfaces. The second summation is associated to the 
velocity induced by the cloud of N  free vortices; it represents the vortex-vortex interactions. 

The incident flow and the vortex-vortex interactions calculations present no problems and they follow the usual 
Vortex Method procedures; to the first approximation the same happens with the summation of 2 M integral terms when 
the body (circular cylinder) oscillation amplitude is small, see Silva (2004). For large amplitude body oscillations, 
however, the body boundary conditions can not be transferred from the actual position to the mean position. 

The fluid velocity on the circular cylinder surface is written as 
 

jiu (t)0yUt)Y;(X,
⋅

−= ; with [ ]t)Acos(
dt

d
(t)0y ω=

⋅
                                                                                                        (17) 

 
As a consequence of the j component of the right hand side of the fluid velocity (in the above expression) one gets 

an additional singularities distribution on the body surface. Of course, the induced velocity due to this additional 
singularities distribution fades away from the body. 

The velocity induced by the body, according to the Panels Method calculations, is indicated by [uc(X,Y), vc(X,Y)]; 
this is the velocity induced at the vortex (i), located at the point [x(t), y(t)]; thus 

 

t)Y;uc(X,t)y;(x,(i)uc =                                                                                                                                                        (18a) 
 

t)Y;vc(X,t)y;(x,(i)vc =                                                                                                                                                        (18b) 
 

where the following relations remains 
 

X(t)(i)x =                                                                                                                                                                                 (19a) 
 

Y(t)0y(t)(i)y +=                                                                                                                                                                  (19b) 

 
The process of vorticity generation is carried out from Eq. (8b), so as to satisfy the no-slip condition. According to 

the discussion above the Panels Method guaranties that the impermeability condition is satisfied in each straight-line 
element, or panel, at pivotal point. At each instant of the time 2M new vortices are created a small distance ε of the 
body and ground plane surfaces, whose strengths are determined from Eq. (8b) applied at 2M point’s right below the 
newly created vortices, along the radial direction. This procedure yields an algebraic system of 2M equations and 2M 
unknowns (the strengths of the vortices). 

In order to remove the singularity in the second summation of Eq. (16) Lamb vortices are used, whose 
mathematical expression for the induced velocity of the kth vortex with strength k∆Γ in the circumferential 
direction kuθ , is (Mustto et al., 1998) 
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where 0σ  is core radius of the Lamb vortex. 
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In this particular equation r  is the radial distance between the vortex center and the point in the flow field where 
the induced velocity is calculated. 

Each vortex particle distributed in the flow field is followed during numerical simulation according to the Adams-
Bashforth second-order formula (Ferziger, 1981) 

 
( ) ( ) ( ) ( )[ ] ξ+∆∆−−+=∆+ ttt0.5ut1.5utzttz                                                                                                                         (21) 

 
in which z is the position of a particle, t∆  is the time increment and ξ  is the random walk displacement. According to 
Lewis (1991), the random walk displacement is given by 

 

( ) ( )[ ]Q2isinQ2cos
P
1tln4β π+π⎟
⎠
⎞

⎜
⎝
⎛∆=ξ                                                                                                                                 (22) 

 
where 1Reβ −= ; P and Q are random numbers between 0.0 and 1.0. 

The pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) as 
 

u=+= u  ,
2

upY
2

.                                                                                                                                                                 (23) 

 
Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a 

Poisson equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson 
equation was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 
1994) 

 

( ) ( )∫∫ ∫∫ ⋅ω×∇−Ωω×⋅∇=⋅∇−Η
Ω 11 S niS inii dSG

Re
1dGdSGYY eue                                                                        (24) 

 
where Η is 1.0 inside the flow (at domainΩ ) and is 0.5 on the boundaries 1S  and 2S . ( ) 1

i Rlog21G −π= is the 
fundamental solution of Laplace equation, R being the distance from ith vortex element to the field point. 

It is worth to observe that this formulation is specially suited for a Lagrangian scheme because it utilizes the 
velocity and vorticity field defined at the position of the vortices in the cloud. Therefore it does not require any 
additional calculation at mesh points. Numerically, Eq. (24) is solved by mean of a set of simultaneous equations for 
pressure iY .   
 
4. Results and conclusions 

 
The numerical simulations were restricted to the flow around a circular cylinder and for the calculations each 

boundary 1S  and 2S  in Fig. (1) was represented by fifty (M=50) source panels; the time step and Reynolds number 
were taken as ∆t=0.05 and Re=105, respectively. In each time step the nascent vortices were placed into the cloud 
through a displacement ε= 0σ =0.0009b normal to the panels. The aerodynamics forces computations starts at t=10.  
 

Table 1: Strouhal number, lift and drag coefficients for a circular cylinder with h/b →∞. 

Re = 105, A = 0 and ω = 0 LC  DC  tS  
Blevins (1984) - 1.20 0.19 
Mustto et al. (1998) - 1.22 0.22 
Alcântara Pereira et al.(2002) 0.04 1.21 0.22 
Present simulation 0.06 1.20 0.19 

 
As first case we consider A=0, ω=0 and h/b → ∞. The result of the first case is presented in Table 1. In this table 

one can find also experimental, Blevins (1984) (with 10% uncertainty) and numerical results Mustto et al. (1998). The 
numerical results of Mustto et al. (1998) were also obtained using the Vortex Method with the Circle Theorem (Milne-
Thompson, 1955), while the Panels Method, using straight-line vortex panels with constant density, was used in the 
results of Alcântara Pereira et al. (2002). The agreement between the two numerical methods is very good for the 
Strouhal number, and both results are close to the experimental values. One should observe, however, that three-
dimensional effects are non-negligible for the Reynolds number used in the simulations. Therefore one can expect that a 
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two-dimensional computation of such a flow must produce higher values for the drag coefficient. On the other hand, the 
Strouhal number is insensitive to these three-dimensional effects. 

10.00 20.00 30.00 40.00
Time

-2.00

-1.00

0.00

1.00

2.00

 
 

Figure 2: Circular cylinder: drag and lift coefficients during the numerical simulation; A = 0, ω = 0 and Re = 105.  
 
Figure 3 shows the mean value of pressure coefficient around the discretized circular cylinder surface. The present 

result is compared with others results available in the literature and current simulation agree very well with the 
experimental ones. From the simulation the predict separation points occur around 86°, while the experimental value is 
around 82°. In other experimental investigation by Son and Hanratty (1969); determined a value of 78° for the 
separation angle. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. Comparison of the circular cylinder case, experimental and numerical results of pC , for A = 0, ω = 0, Re=105. 
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We believe that better approximation for the experimental curve and numerical curve is obtained increasing the 
number of panels to approximate the real surfaces. Also, use of the turbulence modeling (Alcântara Pereira et al., 2002) 
will produce a better numerical result. 

Figure 2 shows that the lift coefficient oscillates around zero, as expected. However the mean value is slightly 
different from zero. 

The influence of the ground effect, with A = 0 and ω = 0, is preliminary investigated and presented in the Fig. 4. 
News simulations will be carried out to investigate the present phenomena. The numerical results seem to indicate that 
the higher value of N would improve the resolution and probably produce a better simulation with respect to the ground 
effect.  

Table 2 shows samples of others results obtained.  Case I presents the results for a stand still cylinder, while Cases 
II to XII represent typical values for small amplitude motions with ω = 1.0 and Re = 105.  

 

0.4 0.8 1.2 1.6 2 2.4

-0.2

-0.1

0

0.1

 
Figure 4. Influence of ground effect in the simulations, for A = 0, ω = 0, Re=105. 

 
To better understand what is happening let us start analyzing the flow behind a stand still cylinder. From each side 

of the symmetry line (x-axis passing through the cylinder center) large structures formed by clusters of point vortices 
are shed alternately forming the Karmann vortex street. For low frequency of the body oscillation in ground effect         
(Case IV in Tab. 2), the behavior is almost the same although the positions of the cluster shedding move according to 
the oscillation amplitude; this is shown in Fig. 5. 

 
Table 2: Results of CL and CD with ω=1.0 and Re = 105. 
 

Case A ω LC  DC  h/b  Gmin 

I 0 0 -0.07194976 1.28201151 0.7 0.2 
II 0.05 1.0 -0.02525930 1.28331304 0.7 0.15 
III 0.10 1.0 0.01069086 1.20050287 0.7 0.10 
IV 0.15 1.0 0.12925778 1.09118962 0.7 0.05 
V 0.05 1.0 -0.10624658 1.43586683 0.6 0.05 
VI 0.05 1.0 -0.0252593 1.28331304 0.7 0.15 
VII 0.05 1.0 -0.18872733 1.57669175 0.8 0.10 
VII 0.05 1.0 0.02866777 1.23376429 0.9 0.25 
IX 0.05 1.0 -0.18839182 1.45015180 1.0 0.45 
X 0.05 1.0 0.10019104 1.26521969 1.2 0.65 
XI 0.05 1.0 0.04547872 1.26271951 1.7 1.15 
XII 0.05 1.0 0.01448197 1.15907335 2.2 1.65 
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For a heaving cylinder in the transition regime, the wake structure becomes intermittent and the vortex clusters are 

shed irregularly from the cylinder in ground effect. 
Figure 6 is assembled with the data from the same simulation used in the Fig. 5; it is presented to illustrate the 

variation of lift and drag coefficients during the numerical simulation referred as Case IV in Tab. 2. As can be observed 
the lift coefficient oscillates with the same frequency of the circular cylinder. In this figure the green line is the cylinder 
motion and the red one is the lift coefficient. This phenomenon is the lock-in regime. This shows that the numerical 
method is able to predict the generation of lift force on an oscillating cylinder in lock-in regime. 

Our simulation for the oscillating cylinder case, which moves with constant velocity in the presence of a ground 
plane, provided a very good estimate of lock-in regime. The amplitude of the oscillatory motion is considered to be 
small compared to the body length; therefore, to the first approximation one is allowed to transfer the body boundary 
condition from the actual position to a mean position of the body surface. 

     
(a) t = 5.1 

 
(b) t = 10.2 

  
(c) t = 20.4 

     
(d) t = 40 

 Figura 5. Wake evolution for t= 5.1, t= 10.2, t= 20.4, t= 40 with A= 0.15, ω=1.0, h/b = 0.7 and Re = 105. 



Proceedings of ENCIT 2006 -- ABCM, Curitiba, Brazil, Dec.5-8, 2006, Paper CIT06-0361 
 

 
 

10.00 20.00 30.00 40.00
Time

-2.00

-1.00

0.00

1.00

2.00

3.00

A
er

od
yn

am
ic

 F
or

ce
s

CD

CL

Body

h= 0,7; w= 1,0; A= 0,15
CL=  0.12925778 
CD=  1.09118962 

 
 

Figure 6: Lift coefficient during the numerical simulation with A= 0.15, ω=1.0, h/b = 0.7 and Re = 105. 
 
As the results for a non-oscillating circular cylinder show the method developed here is very encouraging. It is 

capable of predicting very well the main global quantities inherent to the flow. The analysis of the influence of the 
numerical parameters on the simulation has pointed out the importance of choosing suitable values for M, A, ω and h/b. 
The influence of the numerical parameters on the simulation is extremely important and will be carried out. 

The differences encountered in the comparison of the computed values with the experimental results for the 
distribution of the mean pressure coefficient along the cylinder surface as shown in Figure 3 are attributed mainly to the 
inherent three-dimensionality of the real flow for such a value of the Reynolds number, which is not modeled in the 
simulation. This seems to indicate that a higher value of M would improve the resolution and probably produce a better 
simulation with respect to the pressure distribution. More investigations are needed and one can imagine that with the 
use of more panels (and therefore more free vortices in the cloud) the results tend to be in closer agreement with the 
experiments. 

The sub-grid turbulence modeling is of significant importance for the numerical simulation. The results of this 
analysis,  taking into account the sub-grid turbulence modeling, are being generated and will be presented in due time, 
elsewhere. 

Our simulation for the oscillating circular cylinder case provided a very estimative of the lock-in regime, and it 
needs further investigation. 
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